Advanced Signals and Systems - Indealized Linear, Shift-invariant Systems

 

24. Idealized linear, shift-invariant systems.

Task

Given an one-sided ideal bandpass filter with center-frequency \(\Omega_m\), bandwidth \(2\cdot \Delta\Omega\) and linear phase \(\Omega n_0\).

  1. Determine the frequency response \(H^{(1)}(e^{j{\Omega}})\).
  2. Find the impulse response \(h_0^{(1)}(n)\).
  3. Find the frequency response \(H^{(2)}(e^{j\Omega})\) of the corresponding two-sided bandpass filter.
  4. What is the impulse response \(h_0^{(2)}(n)\) of the two-sided bandpass?

Consider now a different linear-phase system with cosinusoidal attenuation ripples

\begin{equation}\nonumber H^{(3)}\left(e^{j\Omega}\right) = A \left( 1+\alpha \cos\left(2\pi \frac{\Omega}{\Omega_0}\right)\right) e^{-j\Omega n_o}, \qquad \Omega_0=\frac{2\pi}{m},m\in \mathbb{N}. \end{equation}

  1. Find the impulse response \(h_0^{(3)}(n)\), assume that \(m=2\).
  2. The output signal of the above system is filtered by an ideal low-pass filter with cut-off frequency \(\Omega_{c}\). Determine the impulse response \(h_0^{(4)}(n)\) of the overall system.

Amount and difficulty

  • Working time: approx. xx minutes
  • Difficulty: xx

Solution

      1. The frequency response \(H^{(1)}(e^{j{\Omega}})\) can be derived by using the given information. It follows that

        \begin{equation*} H^{(1)}(e^{j{\Omega}}) = \begin{cases} A \cdot e^{-j \Omega n_0},& \Omega_m - \Delta \Omega \leq (\Omega - 2 \pi \lambda) \leq \Omega_m - \Delta \Omega \ \ \ \lambda \in \mathbb{Z} \\ 0 ,& \text{ otherwise.} \end{cases} \end{equation*}

      2. The impulse response \(h_0^{(1)}(n)\) can be derived by the inverse Fourier transform of \(H^{(1)}(e^{j{\Omega}})\). In addition one can use a rectangular prototype \(R_{\Delta \Omega} (e^{j{\Omega}})\) where the inverse transform is known.

        \begin{align*} h^{(1)}(n) &= \mathcal{F}^{-1} \left\{ A \cdot R_{\Delta \Omega} (e^{j{\Omega-\Omega_m}}) \cdot e^{-j \Omega n_0} \right\} \\ &= A \cdot \frac{\Delta \Omega}{\pi} \ \text{si}\left(\Delta \Omega(n-n_0)\right) \cdot e^{+j \Omega_m(n-n_0)} \end{align*}

      3. The frequency response \(H^{(2)}(e^{j\Omega})\) of the corresponding two-sided bandpass filter is derived similar to part (a).

        \begin{equation*} H^{(2)}(e^{j{\Omega}}) = A \cdot \left[ R_{\Delta \Omega} (e^{j{\Omega+\Omega_m}}) + R_{\Delta \Omega} (e^{j{\Omega-\Omega_m}}) \right]\cdot e^{-j \Omega n_0} \end{equation*}

      4. The impulse response \(h_0^{(2)}(n)\) of the two-sided bandpass is again calculated by the inverse Fourier transform.

        \begin{align*} h^{(2)}(n) &= \mathcal{F}^{-1} \left\{ H^{(2)}(e^{j{\Omega}}) \right\} \\ &= A \cdot \frac{\Omega_m + \Delta\Omega}{\pi} \ \text{si}\bigg((\Omega_m +\Delta \Omega)(n-n_0)\bigg) \cdots \\ & \ \ \ - A \cdot \frac{\Omega_m - \Delta\Omega}{\pi} \ \text{si}\bigg((\Omega_m -\Delta \Omega)(n-n_0)\bigg) \end{align*}

      5. In order to find the impulse response \(h_0^{(3)}(n)\) the cosine of the frequency response is expanded and the a inverse Fourier transform is applied. The result is given by

        \begin{align*} h^{(3)}(n) &= \mathcal{F}^{-1} \left\{ H^{(3)}(e^{j{\Omega}}) \right\} \\ &= A \ \gamma_0(n-n_0) + A \frac{\alpha}{2} \ \gamma_0(n-n_0+\frac{2\pi}{\Omega_0})+ A \frac{\alpha}{2} \ \gamma_0(n-n_0-\frac{2\pi}{\Omega_0}) \end{align*}

      6. Cascaded filters can be combined to one filter by the multiplication of their two freqeuncy responses. Hence,

        \begin{equation*} H^{(3)}(e^{j{\Omega}}) = A \cdot \left( 1+\alpha \ \cos\left(2\pi\frac{\Omega}{\Omega_0}\right) \right) e^{-j\Omega n_0} \cdot R_{\Omega_c} (e^{j{\Omega}}) \end{equation*}

        and the inverse Fourier transform leads to the impulse response

        \begin{align*} h^{(4)}(n) &= \mathcal{F}^{-1} \left\{ H^{(3)}(e^{j{\Omega}}) \cdot R_{\Omega_c} (e^{j{\Omega}} )\right\} \\ &= h^{(3)}(n) * \frac{\Omega_c}{\pi} \ \text{si} (\Omega_c n) \\ &= A \frac{\Omega_c}{\pi} \ \text{si} \bigg(\Omega_c (n-n_0)\bigg) + A \frac{\alpha}{2} \frac{\Omega_c}{\pi} \ \text{si} \bigg(\Omega_c (n-n_0+m)\bigg) \cdots \\ & \ \ \ + A \frac{\alpha}{2} \frac{\Omega_c}{\pi} \ \text{si} \bigg(\Omega_c (n-n_0-m)\bigg) \end{align*}

Recent Publications

P. Durdaut, J. Reermann, S. Zabel, Ch. Kirchhof, E. Quandt, F. Faupel, G. Schmidt, R. Knöchel, and M. Höft: Modeling and Analysis of Noise Sources for Thin-Film Magnetoelectric Sensors Based on the Delta-E Effect, IEEE Transactions on Instrumentation and Measurement, published online, 2017

P. Durdaut, S. Salzer, J. Reermann, V. Röbisch, J. McCord, D. Meyners, E. Quandt, G. Schmidt, R. Knöchel, and M. Höft: Improved Magnetic Frequency Conversion Approach for Magnetoelectric Sensors, IEEE Sensors Letters, published online, 2017

 

Website News

18.06.2017: Page about KiRAT news added (also visible in KiRAT).

31.05.2017: Some pictures added.

23.04.2017: Time line for the lecture "Adaptive Filters" added.

13.04.2017: List of PhD theses added.

Contact

Prof. Dr.-Ing. Gerhard Schmidt

E-Mail: gus@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Faculty of Engineering
Institute for Electrical Engineering and Information Engineering
Digital Signal Processing and System Theory

Kaiserstr. 2
24143 Kiel, Germany

Recent News

Alexej Namenas - A New Guy in the Team

In June Alexej Namenas started in the DSS Team. He will work on real-time tracking algorithms for SONAR applications. Alexej has done both theses (Bachelor and Master) with us. The Bachelor thesis in audio processing (beamforming) and the Master thesis in the medical field (real-time electro- and magnetocardiography). In addition, he has intership erperience in SONAR processing.

We are pretty ...


Read more ...