Magnetoneurography

More than 6 % of the population suffers from peripheral neuropathies. Over 90 % of all neuropathies are induced by local pressure on the nerve. A detailed diagnosis requires exact localization and treatment by conservative or surgical decompression e.g. 300 000 surgeries are only performed for the carpal tunnel syndrome every year.

 

 

 

 

 

 

Magnetoneurography (MNG) provides an alternative and also very attractive technology to the electrode-based nerve conduction studies called Electroneurography (ENG). The Electroneuography is the current gold standard of nerve assessment to investigate the nerve conduction velocity. In this case the nerve signal is deviated by conventional electrical electrodes. This technique only allows to distinguish between axonal and demyelinating forms of neuropathy, but the localizing capacities are quite poor. Finally, this results in a lack of spatial resolution, because only segment-wise information are available. Additional modern nerve imaging techniques are required to create a functional projection of the nerve characterizing for an accurate diagnosis and treatment.

Magnetoneurography uses magnetic field sensors instead and they do not require direct skin contact. Moreover magnetic field sensors can be combined in arrays to make a localization of the potential nerve pathology possible. This enables also highly resolved functional nerve sampling at bedside. The main objective of this modern technique is to optimize the diagnostic specificity of neuropathies by developing a spatially continuous scanning of nerves with a magnetic field sensor. This approach will increase and also combine the spatial resolution and functional information. In summary, this will further improve the treatment.

The nerve electromagnetic field of human nerve pulses is quite low. Peak amplitudes in the range of ft to pT can be achieved by using an external electric stimulation of the nerve. As the stimulus to the nerve can be repeated, the signal to noise ratio can be improved by using enhanced low-noise adaptive averaging algorithms. Project B6 of the Collaborative Research Centre CRC 1261 focuses on the “Multimodal Mapping of Nerve Pathology with Magnetoelectric Sensors” and also the signal to noise enhancement of such sensor signals. This project founded by the Deutsche Forschungsgemeinschaft uses new sensor concepts to realize a Magnetoneurography at room temperature. Further details about this project of the CRC 1261 can be found here.

Website News

13.08.2017: New Gas e.V. sections (e.g. pictures or prices) added.

05.08.2017: The first "slide carousel" added.

03.08.2017: Started with the RED project. Will be ready in a few years ...

30.07.2017: List of PhD theses updated and extended.

Recent Publications

P. Durdaut, J. Reermann, S. Zabel, Ch. Kirchhof, E. Quandt, F. Faupel, G. Schmidt, R. Knöchel, and M. Höft: Modeling and Analysis of Noise Sources for Thin-Film Magnetoelectric Sensors Based on the Delta-E Effect, IEEE Transactions on Instrumentation and Measurement, published online, 2017

P. Durdaut, S. Salzer, J. Reermann, V. Röbisch, J. McCord, D. Meyners, E. Quandt, G. Schmidt, R. Knöchel, and M. Höft: Improved Magnetic Frequency Conversion Approach for Magnetoelectric Sensors, IEEE Sensors Letters, published online, 2017

 

Contact

Prof. Dr.-Ing. Gerhard Schmidt

E-Mail: gus@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Faculty of Engineering
Institute for Electrical Engineering and Information Engineering
Digital Signal Processing and System Theory

Kaiserstr. 2
24143 Kiel, Germany

Recent News

Jens Reermann Defended his Dissertation with Distinction

On Friday, 21st of June, Jens Reermann defended his research on signals processing for magnetoelectric sensor systems very successfully. After 90 minutes of talk and question time he finished his PhD with distinction. Congratulations, Jens, from the entire DSS team.

Jens worked for about three and a half years - as part of the collaborative research center (SFB) 1261 - on all kinds of signal ...


Read more ...